Indian Statistical Institute, Bangalore

B. Math (Hons.) Third Year

Second Semester - Differential Geometry II

Final Exam Maximum Marks: 50

Date: May 10, 2018

Duration: 3 hours

- 1. Define the following notions:- [3 + 3 + 3 + 3 + 3 = 15]
 - (a) <u>Involutive</u> distribution
 - (b) Integral submanifold
 - (c) Complete vector field
 - (d) Two vector fields ϕ -related
 - (e) <u>Left-invariant</u> vector field.
- 2. Prove that S^3 is diffeomorphic to SU(2). [7]
- 3. Define a tensor field of type (r, s) on a smooth manifold M. Let w be a 1-form on M and define $F : \chi(M) \times \chi(M) \to C^{\infty}(M)$ by F(X, Y) = X(w(Y)). Is F a (2,0)- tensor field? [2 + 4 = 6]
- 4. Give an example of a manifold which is not orientable and justify your answer. [2 + 3 = 5]
- 5. The stereographic projection $\varphi : (\mathbb{S}^m \setminus \{(1, 0, 0, ..., 0)\}, < , >_{\mathbb{R}^{n+1}}) \rightarrow (\mathbb{R}^m, \frac{4}{(1+|x|^2)^2} < , >_{\mathbb{R}^m})$ is given by $\varphi(x_0, x_1, x_2...x_m) = \frac{1}{1-x_0}(x_1, x_2, ...x_m)$. Show that φ is an isometry. [7]
- 6. Let SO(m) be the special orthogonal group equipped with the metric $\langle X, Y \rangle = \frac{1}{2}$ trace $(X^t \cdot Y)$. Prove that \langle , \rangle is left-invariant and that for vector fields $X, Y \in T_eSO(m)$, we have $\nabla_X Y = \frac{1}{2}[X, Y]$. [5 + 5 = 10]